

MPPT 75/50

12/24Vdc battery systems VE.Direct communication port Charge LED indication Ultra fast MPPT Tracker 98% maximum efficiency Eight preprogrammed algorithms, selectable with a rotary switch

No Load output

BPC IP22

Push button for battery selection

- Normal
- High
- Recondition
- Li-ion

2nd generation design

- Higher efficiency
- IP22

BPC IP65

Protects and controls a system of Victron LFP battery's It's the smallest BMS available, with no power restrictions

The BMS will:

ictron energy

Shut down or disconnect loads in case of imminent cell under voltage, Reduce charge current in case of imminent cell over/under voltage or temperature (VE.Bus products only)

Protects 12 V, 24 V and 48 V systems Operating voltage range of the BMS: 9 to 70 V DC.

Communicates with all VE.Bus products

The VE.Bus BMS connects to a MultiPlus, Quattro or Phoenix inverter with a standard RJ45 UTP cable.

LED indicators

Enabled (blue) Cell>4V or temperature (red)

Cell>2,8V (blue)

- : VE.Bus products are enabled.
- : charge disconnect output low because of imminent cell over voltage or over temperature.
- : load disconnect active.

Cyrix Update

Cyrix-I This one will going to be replaced by the Cyrix-ct Contacts are temperature controlled which extends lifespan

Cyrix-Li-Charge For charging Lithium batteries only from charge side (Diode) Voltage measurement on both sides

Cyrix-Li-ct For paralleling Lithium batteries with lead acid starter battery

Cyrix-Li-Load For (dis)connecting loads on battery voltage /Ve.bus bms

Easy Solar

Based on Multi 12/1600/70

Intergrated 15Amp Mppt controller Main AC output Switched AC output

Easy installing AC1 in AC1 out AC2 out MC4 Solar Battery cabling

ECO multi

ECO multi

victron energy

victron energy

ECO multi

Based on a Multi 24/3000/70 and 2 x LPF 90Ah (2.3kWh)

Is 2.3Kwh enough?

Whenever PV output exceeds consumption, storing excess output for later use will increase self-consumption. A 2.3 kWh Li-ion battery is an efficient solution for a two person energy conscious household.

Energy consumption from dusk to dawn will be 2 kWh or more, even when no energy hungry appliances like a dishwasher or clothes dryer are used. A fully charged 2.3 kWh battery will therefore be discharged before the sun starts shining again.

The average household with two children would fully utilize a 4.6 kWh Li-ion battery; one additional battery module.

Battery Tower

Battery Tower 2.3kWh/25,6V Battery Tower 4.6kWh/25,6V Battery Tower 4.6kWh/51,2V 50 Kg 82 Kg 82 Kg

Lithium Battery 51,2 90Ah LiFePO4

Question or remarks?